Abstract

How to find the representative bands is a key issue in band selection for hyperspectral data. Very often, unsupervised band selection is associated with data clustering, and the cluster centers (or exemplars) are considered ideal representatives. However, partitioning the bands into clusters may be very time-consuming and affected by the distribution of the data points. In this letter, we propose a new band selection method, i.e., exemplar component analysis (ECA), aiming at selecting the exemplars of bands. Interestingly, ECA does not involve actual clustering. Instead, it prioritizes the bands according to their exemplar score, which is an easy-to-compute indicator defined in this letter measuring the possibility of bands to be exemplars. As a result, ECA is of high efficiency and immune to distribution structures of the data. The experiments on real hyperspectral data set demonstrate that ECA is an effective and efficient band selection method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.