Abstract
The COVID-19 pandemic has induced significant transit ridership losses worldwide. This paper conducts a quantitative analysis to reveal contributing factors to such losses, using data from the Chicago Transit Authority's bus and rail systems before and after the COVID-19 outbreak. It builds a sequential statistical modeling framework that integrates a Bayesian structural time-series model, a dynamics model, and a series of linear regression models, to fit the ridership loss with pandemic evolution and regulatory events, and to quantify how the impacts of those factors depend on socio-demographic characteristics. Results reveal that, for both bus and rail, remote learning/working answers for the majority of ridership loss, and their impacts depend highly on socio-demographic characteristics. Findings from this study cast insights into future evolution of transit ridership as well as recovery campaigns in the post-pandemic era.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation research. Part D, Transport and environment
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.