Abstract
Several techniques have been proposed to upper-bound the worst-case execution time behaviour of programs in the domain of critical real-time embedded systems. These computing systems have strong requirements regarding the guarantees that the longest execution time a program can take is bounded. Some of those techniques use extreme value theory (EVT) as their main prediction method. In this paper, EVT is used to estimate a high quantile for different types of execution time distributions observed for a set of representative programs for the analysis of automotive applications. A major challenge appears when the dataset seems to be heavy tailed, because this contradicts the previous assumption of embedded safety-critical systems. A methodology based on the coefficient of variation is introduced for a threshold selection algorithm to determine the point above which the distribution can be considered generalised Pareto distribution. This methodology also provides an estimation of the extreme value index and high quantile estimates. We have applied these methods to execution time observations collected from the execution of 16 representative automotive benchmarks to predict an upper-bound to the maximum execution time of this program. Several comparisons with alternative approaches are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Data Analysis Techniques and Strategies
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.