Abstract

Execution time is an important topic when using metaheuristic-based optimization algorithms within control structures. This is the case with Receding Horizon Control, whose controller makes predictions based on a metaheuristic algorithm. Because the closed loop’s main time constraint is that the controller’s run time must be smaller than the sampling period, this paper joins the authors’ previous work in investigating decreasing execution time. In this context, good results have been obtained by introducing the “reference control profile” concept that leads to the idea of adapting the control variables’ domains for each sampling period. This paper continues to address this concept, which is adjusted to harmonize with the Particle Swarm Optimization algorithm. Moreover, besides adapting the control variables’ domains, the proposed controller’s algorithm tunes these domains to avoid losing convergence. A simulation study validates the new techniques using a nontrivial process model and considering three modes in which the controller works. The results showed that the proposed techniques have practical relevance and significantly decrease execution time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.