Abstract
Higher dimensional automata (HDA) are highly expressive models for concurrency in Computer Science, cf van Glabbeek (Theor Comput Sci 368(1–2):168–194, 2006). For a topologist, they are attractive since they can be modeled as cubical complexes—with an inbuilt restriction for directions of allowable (d-)paths. In Raussen (Algebr Geom Topol 10:1683–1714, 2010), we developed a new method describing, for a certain subclass of HDA, the homotopy type of the space of execution paths (d-paths) as a finite simplicial complex. Several restrictions that were made to ease the presentation in that latter paper will be removed in the present article in order to make the results applicable in greater generality. Furthermore, we take a close look at semaphore models with semaphores all of arity one. It turns out that execution spaces for these are always homotopy discrete with components representing sets of “compatible” permutations. Finally, we describe a model for the complement of the execution space seen as a subspace of a product of spheres—with the aim to make the calculation of topological invariants easier and faster.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Applicable Algebra in Engineering, Communication and Computing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.