Abstract

Both endocrine and exocrine pancreatic cells arise from pancreatic-duodenal homeobox 1 (pdx1)-positive progenitors. The molecular mechanisms controlling cell fate determination and subsequent proliferation, however, are poorly understood. Unlike endocrine cells, less is known about exocrine cell specification. We report here the identification and characterization of a novel exocrine cell determinant gene, exocrine differentiation and proliferation factor (exdpf), which is highly expressed in the exocrine cell progenitors and differentiated cells of the developing pancreas in zebrafish. Knockdown of exdpf by antisense morpholino caused loss or significant reduction of exocrine cells due to lineage-specific cell cycle arrest but not apoptosis, whereas the endocrine cell mass appeared normal. Real-time PCR results demonstrated that the cell cycle arrest is mediated by up-regulation of cell cycle inhibitor genes p21Cip, p27Kip, and cyclin G1 in the exdpf morphants. Conversely, overexpression of exdpf resulted in an overgrowth of the exocrine pancreas and a severe reduction of the endocrine cell mass, suggesting an inhibitory role for exdpf in endocrine cell progenitors. We show that exdpf is a direct target gene of pancreas-specific transcription factor 1a (Ptf1a), a transcription factor critical for exocrine formation. Three consensus Ptf1a binding sites have been identified in the exdpf promoter region. Luciferase assay demonstrated that Ptf1a promotes transcription of the exdpf promoter. Furthermore, exdpf expression in the exocrine pancreas was lost in ptf1a morphants, and overexpression of exdpf successfully rescued exocrine formation in ptf1a-deficient embryos. Genetic evidence places expdf downstream of retinoic acid (RA), an instructive signal for pancreas development. Knocking down exdpf by morpholino abolished ectopic carboxypeptidase A (cpa) expression induced by RA. On the other hand, exdpf mRNA injection rescued endogenous cpa expression in embryos treated with diethylaminobenzaldehyde, an inhibitor of RA signaling. Moreover, exogenous RA treatment induced anterior ectopic expression of exdpf and trypsin in a similar pattern. Our study provides a new understanding of the molecular mechanisms controlling exocrine cell specification and proliferation by a novel gene, exdpf. Highly conserved in mammals, the expression level of exdpf appears elevated in several human tumors, suggesting a possible role in tumor pathogenesis.

Highlights

  • The pancreas is a mixed organ with endocrine and exocrine compartments

  • We report the characterization of a novel gene, exocrine differentiation and proliferation factor, as a regulator for exocrine cell fate and differentiation/proliferation

  • We show that it is a direct target of the transcription factor pancreas-specific transcription factor 1a (Ptf1a), which is expressed in progenitors that give rise to all pancreatic cell types

Read more

Summary

Introduction

The pancreas is a mixed organ with endocrine and exocrine compartments. The endocrine portion contains four distinct hormone-producing cell types organized into islets of Langerhans. The exocrine portion includes acinar cells, which produce digestive enzymes, and duct cells, which form an elaborate duct system that transports these enzymes into the gut. The majority of malignant pancreatic cancers derive from the exocrine portion [3]. Development of all major pancreatic cell types, including endocrine, exocrine, and duct cells, requires the function of the pancreatic-duodenal homeobox 1 (Pdx, known as Ipf-1) gene [4,5]. The molecular mechanisms determining early cell fate and the subsequent proliferation of endocrine and exocrine cells are not fully understood. Identification and characterization of novel lineage-specific regulators of exocrine pancreas cell proliferation could shed light on the pathogenesis of pancreatic cancers

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.