Abstract

Larvae of the blowfly Lucilia sericata facilitate wound healing by removing dead tissue and biofilms from non-healing and necrotic wounds. Another beneficial action of larvae and their excretions/secretions (ES) is down-regulation of excessive inflammation. As prolonged complement activation is key to excessive inflammation, the aim of this study was to elucidate the mechanisms underlying the anti-complement activities of ES. Results revealed that heat sensitive serine proteases in ES degrade multiple complement proteins in all steps of the three complement activation pathways. Importantly, C3a and C5a-major activators of inflammation-were also degraded by ES and pretreatment of these factors with ES completely blocked their ability to induce activation of human neutrophils. Pre-exposure of the neutrophils to ES did not affect their responsiveness to C3a/C5a and fMLP, indicating that the receptors for these activators on neutrophils were not affected by ES. Surprisingly, heat and serine protease inhibitor pretreatment did not affect the ability of ES to inhibit C5b-9 complex formation despite degrading complement proteins, indicating a second complement-inhibiting molecule in ES. Heated ES was as effective as intact ES in inhibiting C3 deposition upon activation of the alternative pathway, but was significantly less effective in wells with a classical or lectin pathway-specific coating. Unfortunately, the molecules affecting the complement system could not be identified due to an insufficient database for L. sericata. Together, larval ES inhibit complement activation by two different mechanisms and down-regulate the C3a/C5a-mediated neutrophil activation. This attenuates the inflammatory process, which may facilitate wound healing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.