Abstract
Copper-deprived sycamore (Acer pseudoplatanus) cells do not excrete molecules of active laccase in their culture medium. In the range of 2-100 micrograms of copper initially present per litre of nutrient solution, the total laccase activity measured in the cell suspensions at the end of the exponential phase of growth was closely proportional to the amount of added copper. However, copper-deprived cells excreted the laccase apoprotein (laccase without copper) at the same rate as copper-supplied cells excreted the active, copper-containing, laccase. When the culture medium was initially supplied with limiting amounts of copper, the active laccase was excreted until all copper molecules were metabolized. Thereafter, the laccase apoprotein was excreted. Consequently, at the end of the exponential phase of growth, the cell supernatants contained a mixture of apoprotein and copper-containing laccase. After purification and concentration, this mixture of copper-containing laccase (blue) and laccase apoprotein (slightly yellow) showed a yellow-green colour. Under copper-limiting culture conditions an equivalent decrease of Type 1, Type 2 and Type 3 Cu2+ was observed. Addition of copper to copper-deficient enzyme solutions does not result in a recovery of the enzyme activity. However, when added to copper-deficient sycamore-cell suspensions, copper induced a recovery of the excretion of active enzyme, at a normal rate, within about 10 h. The first molecules of active laccase were excreted after 3-4 h.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.