Abstract

Escherichia coli BL21 strains were found to excrete a large amount of outer membrane protein F (OmpF) into culture medium during high-cell-density cultivation. From this interesting phenomenon, a novel and efficient OmpF fusion system was developed for the excretion of recombinant proteins by E. coli. The ompF gene of E. coli BL21(DE3) was first knocked out by using the red operon of bacteriophage lambda to construct E. coli MBEL-BL101. For the excretion of human beta-endorphin as a model protein, the beta-endorphin gene was fused to the C terminus of the E. coli ompF gene by using a linker containing the Factor Xa recognition site. To develop a fed-batch culture condition that allows efficient production of OmpF-beta-endorphin fusion protein, three different feeding strategies, an exponential feeding strategy and two pH-stat strategies with defined and complex nutrient feeding solutions, were examined. Among these, the pH-stat feeding strategy with the complex nutrient feeding solution resulted in the highest productivity (0.33 g of protein per liter per h). Under this condition, up to 5.6 g of OmpF-beta-endorphin fusion protein per liter was excreted into culture medium. The fusion protein was purified by anion-exchange chromatography and cleaved by Factor Xa to yield beta-endorphin, which was finally purified by reverse-phase chromatography. From 2.7 liters of culture supernatant, 545.4 mg of beta-endorphin was obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.