Abstract

Quasi-free scattering reactions of the type (p,2p) were measured for the first time exclusively in complete and inverse kinematics, using a 12C beam at an energy of ∼400 MeV/u as a benchmark. This new technique has been developed to study the single-particle structure of exotic nuclei in experiments with radioactive-ion beams. The outgoing pair of protons and the fragments were measured simultaneously, enabling an unambiguous identification of the reaction channels and a redundant measurement of the kinematic observables. Both valence and deeply-bound nucleon orbits are probed, including those leading to unbound states of the daughter nucleus. Exclusive (p,2p) cross sections of 15.8(18) mb, 1.9(2) mb and 1.5(2) mb to the low-lying 0p-hole states overlapping with the ground state (3/2−) and with the bound excited states of 11B at 2.125 MeV (1/2−) and 5.02 MeV (3/2−), respectively, were determined via γ-ray spectroscopy. Particle-unstable deep-hole states, corresponding to proton removal from the 0s-orbital, were studied via the invariant-mass technique. Cross sections and momentum distributions were extracted and compared to theoretical calculations employing the eikonal formalism. The obtained results are in a good agreement with this theory and with direct-kinematics experiments. The dependence of the proton–proton scattering kinematics on the internal momentum of the struck proton and on its separation energy was investigated for the first time in inverse kinematics employing a large-acceptance measurement.

Highlights

  • Quasi-free scattering reactions of the type (p, 2p) were measured for the first time exclusively in complete and inverse kinematics, using a 12C beam at an energy of ∼400 MeV/u as a benchmark

  • A strong confidence on the role of single-particle (SP) states in nuclear structure and nuclear spectroscopy arose with the work of Wigner, Mayer, and Jensen, recipients of the 1963 Nobel Prize, through the discovery and application of fundamental symmetry principles to nuclei and for realizing that much of the trend of nuclear masses and their energy spectra could be well understood by means of a simple SP shell model [1,2,3]

  • The large potential of studying the SP properties of nuclei by means of quasi-free nucleon–nucleon scattering (QFS) at high energy has been already realized by Chamberlain and Segrè [4] when they first observed this process pointing out the sensitivity to the intrinsic nucleon momentum distribution

Read more

Summary

Introduction

Quasi-free scattering reactions of the type (p, 2p) were measured for the first time exclusively in complete and inverse kinematics, using a 12C beam at an energy of ∼400 MeV/u as a benchmark. In this Letter we present a new experimental approach to QFS reactions via inverse and complete kinematics measurements with a large-acceptance detection system.

Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.