Abstract

Recently, Bi3+-activated phosphors have been extensively studied for potential applications in phosphor-converted white light-emitting diodes (pc-WLEDs). However, Bi3+ activators usually exhibit low quantum efficiency and poor thermal stability due to the outermost 6s6p-orbitals of Bi3+ being strongly coupled with the host lattice, inhibiting potential applications. Herein, we rationally design a novel phosphor CaBaGa4O8:Bi3+, which adopts a tridymite-type structure and crystallizes in the space group of Imm2. CaBaGa4O8:Bi3+ presents a bright green light emission peaking at 530 nm with a FWHM narrower than 90 nm. Comprehensive structural and spectroscopic analyses unravelled that Bi3+ emitters were site-selectively incorporated into the triangular prism (Ca2+-site) in CaBaGa4O8:Bi3+ since there exist two distinct crystallographic sites that can accommodate the Bi3+ ions. An excellent luminescence thermal stability of 73% of the ambient temperature photoluminescence intensity can be maintained at 423 K for CaBaGa4O8:0.007Bi3+. Impressively, the quantum efficiency (QE) of CaBaGa4O8:0.007Bi3+ was remarkably improved to 47.2% for CaBaGa4O8:0.007Bi3+,0.03Zn2+via incorporating the Zn2+ compensators without sacrificing the luminescence thermal stability. The high thermal stability and QE of CaBaGa4O8:0.007Bi3+,0.03Zn2+ are superior to most of the Bi3+-activated green-emitting oxide phosphors. The perspective applications in pc-WLEDs for CaBaGa4O8:0.007Bi3+,0.03Zn2+ were also studied by fabricating LED devices.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call