Abstract
Stochastic lattice gases with degenerate rates, namely conservative particle systems where the exchange rates vanish for some configurations, have been introduced as simplified models for glassy dynamics. We introduce two particular models and consider them in a finite volume of size $\ell$ in contact with particle reservoirs at the boundary. We prove that, as for non--degenerate rates, the inverse of the spectral gap and the logarithmic Sobolev constant grow as $\ell^2$. It is also shown how one can obtain, via a scaling limit from the logarithmic Sobolev inequality, the exponential decay of a macroscopic entropy associated to a degenerate parabolic differential equation (porous media equation). We analyze finally the tagged particle displacement for the stationary process in infinite volume. In dimension larger than two we prove that, in the diffusive scaling limit, it converges to a Brownian motion with non--degenerate diffusion coefficient.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.