Abstract

Graphs that are critical (minimal excluded minors) for embeddability in surfaces are studied. In Part I, it was shown that graphs that are critical for embeddings into surfaces of Euler genus k or for embeddings into nonorientable surface of genus k are built from 3-connected components, called hoppers and cascades. In Part II, all cascades for Euler genus 2 are classified. As a consequence, the complete list of obstructions of connectivity 2 for embedding graphs into the Klein bottle is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.