Abstract

We employ dynamical density-matrix renormalization-group (DDMRG) and field-theory methods to determine the frequency-dependent optical conductivity in one-dimensional extended, half-filled Hubbard models. The field-theory approach is applicable to the regime of ``small'' Mott gaps which is the most difficult to access by DDMRG. For very large Mott gaps the DDMRG recovers analytical results obtained previously by means of strong-coupling techniques. We focus on exciton formation at energies below the onset of the absorption continuum. As a consequence of spin-charge separation, these Mott-Hubbard excitons are bound states of spinless, charged excitations (``holon-antiholon'' pairs). We also determine exciton binding energies and sizes. In contrast to simple band insulators, we observe that excitons exist in the Mott-insulating phase only for a sufficiently strong intersite Coulomb repulsion. Furthermore, our results show that the exciton binding energy and size are not related in a simple way to the strength of the Coulomb interaction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.