Abstract

By using ab initio calculations with the HSE06 hybrid functional and GW approximation combined with numerical solution of the Bethe Salpeter equation (GW–BSE) we predict the existence of diverse number of excitonic states in multifunctional hydroxides X(OH)2 (X=Mg and Ca) that were not previously reported experimentally or theoretically. The imaginary part of the dielectric function and the reflectivity spectra show very strong peaks corresponding to the electron–hole pair states of large binding energy. The origin of the excitons is attributed to strong localization of the hole and the electron associated with oxygen 2px,2py occupied states as well as to oxygen and earth metal s empty states, respectively. The results have important implications for different applications of the materials in optoelectronic devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.