Abstract
We use quantum theory of molecular crystals to study collective excitations (excitons) of gyrotropic quantum-dot (QD) supercrystals with complex lattices consisting of two or more sublattices of semiconductor QDs. We illustrate the potentials of our approach by applying it to analytically calculate the linear permittivity tensor of supercrystals with two QDs per unit cell. The spatial dispersions of exciton energy bands and permittivity tensor components are examined in detail for two-dimensional supercrystals with a square lattice, which are relatively easy to fabricate in practice. Our results provide a systematic and versatile framework for the engineering of dispersion properties of gyrotropic QD supercrystals and for the analysis of their absorption and circular dichroism spectra.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.