Abstract

Resonance dielectric response of excitons is studied for the high-quality InGaAs/GaAs heterostructures with wide asymmetric quantum wells (QWs). To highlight effects of the QW asymmetry, we have grown and studied several heterostructures with nominally square QWs as well as with triangle-like QWs. Several quantum confined exciton states are experimentally observed as narrow exciton resonances. A standard approach for the phenomenological analysis of the profiles is generalized by introducing different phase shifts for the light waves reflected from the QWs at different exciton resonances. Good agreement of the phenomenological fit to the experimentally observed exciton spectra for high-quality structures allowed us to reliably obtain parameters of the exciton resonances: the exciton transition energies, the radiative broadenings, and the phase shifts. A direct numerical solution of the Schrödinger equation for the heavy-hole excitons in asymmetric QWs is used for microscopic modeling of the exciton resonances. Remarkable agreement with the experiment is achieved when the effect of indium segregation is taken into account. The segregation results in a modification of the potential profile, in particular, in an asymmetry of the nominally square QWs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.