Abstract

We present studies of the excitonic spectrum in superlattices (SLs) of CdSe insertions in a ZnSe matrix aimed at elucidating the CdSe/ZnSe interface morphology. The experimental photoluminescence excitation spectra are compared with the results of variational exciton calculations performed within the effective mass approximation. The shape of the average vertical (along the SL growth axis) distribution of CdSe within each insertion, used in the calculations, was obtained from a theoretical simulation of X-ray diffraction (XRD) rocking curves measured in the same samples. The results indicate that the thinnest layers are graded composition ZnCdSe quantum wells (QWs), generally homogeneous in the layer planes, whereas flat islands enriched by Cd appear at the CdSe nominal thickness larger than 0.5–0.6 monolayer (ML).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.