Abstract

Exciton characteristics of GaTe single crystals grown by vapor-phase transport were studied by optical measurements. A hydrogenlike exciton series up to $n=4$ was clearly observed in the absorption spectra at 2 K. In the $n=1$ exciton energy region three types of exciton lines were found. By analyzing microphotoluminescence and micro-Raman-scattering spectra on the basis of group theory, it was clarified that these exciton lines are not due to different polytypes but to intrinsic exciton states. Furthermore, optical-absorption spectra in a magnetic field at 4.2 K were measured. In the Voigt configuration, one and two components for $E\ensuremath{\parallel}b$ and $E\ensuremath{\perp}b$ polarizations, respectively, were observed in the $n=1$ and 2 exciton lines. These magnetic-field dependencies cannot be interpreted on the basis of the previously proposed L-S coupling regime. The electronic band structure of GaTe was studied by the ab initio tight-binding linear muffin-tin orbitals method. It was found that GaTe is a direct-gap semiconductor and that the band edge is located at an M point of the Brillouin zone. From a comparison of exciton absorption spectra and the calculated band structure, the existence of the three types of excitons was interpreted from the viewpoint of $j\ensuremath{-}j$ coupling. Our model calculation was also able to explain the Zeeman splitting and the diamagnetic shift of the exciton peak energies.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.