Abstract

Exciton-polaritons are half-light, half-matter bosonic quasiparticles formed by strong exciton-photon coupling in semiconductor microcavities. These hybrid particles possess the strong nonlinear interactions of excitons and keep most of the characteristics of the underlying photons. As bosons, above a threshold density they can undergo Bose-Einstein condensation to a polariton condensate phase and exhibit a rich variety of exotic macroscopic quantum phenomena in solids. Recently, organic semiconductors have been considered as a promising material platform for these studies due to their room-temperature stability, good processability, and abundant photophysics and photochemistry. Herein, recent advances of exciton-polaritons and their Bose-Einstein condensates in organic semiconductor microcavities are summarized. First, the basic physics is introduced, and then their emerging applications are highlighted. The remaining questions are also discussed and a personal viewpoint about the potential directions for future research is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.