Abstract

We examine the relationship between atomic and excitonic superradiance in thin and thick slab geometries. We demonstrate that superradiance can be treated by a unified formalism for atoms, Frenkel excitons, and Wannier excitons. It is well known that in sufficiently thick slabs, the normal modes of the system are polaritons, a superposition of the slab exciton, and photon modes. We specifically examine the crossover from superradiance to polariton modes and derive both the crossover slab length and the maximum superradiative decay rate. We show that the exciton and polariton pole approximations, which give simple expressions for superradiance and polariton mode decay rates, give excellent agreement with the exact expressions for the pertinent thicknesses for which the approximations are valid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.