Abstract

Hybrid organic/inorganic perovskites have emerged as efficient semiconductor materials for applications in photovoltaic solar cells with conversion efficiency above 20 \%. Recent experiments have synthesized ultra-thin two-dimensional (2D) organic perovskites with optical properties similar to those of 2D materials like monolayer MoS$_2$: large exciton binding energy and excitonic effects at room temperature. In addition, 2D perovskites are synthesized with a simple fabrication process with potential low-cost and large-scale manufacture. Up to now, state-of-the-art simulations of the excitonic states have been limited to the study of bulk organic perovskites. A large number of atoms in the unit cell and the complex role of the organic molecules make inefficient the use of \textit{ab initio} methods. In this work, we define a simplified crystal structure to calculate the optical properties of 2D perovskites, replacing the molecular cations with inorganic atoms. We can thus apply state-of-the-art, parameter-free and predictive \textit{ab initio} methods like the GW method and the Bethe-Salpeter equation to obtain the excitonic states of a model 2D perovskite. We find that optical properties of 2D perovskites are strongly influenced by excitonic effects, with binding energies up to 600 meV. Moreover, the optical absorption is carried out at the bromine and lead atoms and therefore the results are useful for a qualitatively understanding of the optical properties of organic 2D perovskites.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.