Abstract

Lines corresponding to localized excitonic states formed from “above-barrier” electron and/or hole states (specifically, excitation lines of excitons formed by an electron localized in a QW and a free heavy hole) have been observed in the photoluminescence excitation spectra of GaAs/Al0.05Ga0.95As structures with quantum wells (QWs), each containing one single-particle size-quantization level for charge carriers of each type. A computational method is proposed that permits finding the binding energy and wave functions of excitons in QWs taking the Coulomb potential into account self-consistently. The computed values of the excitonic transition energies agree quite well with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.