Abstract

First-principle density functional theory calculations with quasiparticle corrections and many body effects are performed to study the electronic and optical properties of armchair graphene nanoribbons (AGNRs) with variant edges saturated by hydrogen atoms. The "effective width" method associated with the reported AGNR family effect is introduced to understand the electronic structures. The method is further confirmed by analyses of the optical transition spectra and the exciton wavefunctions. The optical properties, including the optical transition spectra, exciton binding energies and the distribution of exciton wavefunctions, can be tuned with the hydrogen saturation edge, thus providing an effective way to control the features of the AGNRs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.