Abstract

Systems with strong spin-orbit coupling, which competes with other interactions and energy scales, offer a fertile playground to explore new correlated phases of matter. Weyl semimetals are an example where the phenomenon leads to a low-energy effective theory in terms of massless linearly dispersing fermions in three dimensions. In the absence of interactions chirality is a conserved quantum number, protecting the semimetallic physics against perturbations that are translationally invariant. In this Letter we show that the interplay between interaction and topology yields a novel chiral excitonic insulator. The state is characterized by a complex vectorial order parameter leading to a gapping out of the Weyl nodes. A striking feature is that it is ferromagnetic, with the phase of the order parameter determining the direction of the induced magnetic moment.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.