Abstract

Transformations of cooperative electronic states by impacts of optical pumping and/or electrostatic doping is a new mainstream in physics of correlated systems. Here we present a semi-phenomenological modeling of spatio-temporal effects in a system where the light absorption goes through a channel creating the excitons—intra-molecular ones or bound electron–hole pairs—and finally the condensate of optical excitons feeds and stimulates phase transformations. Interacting with a near-critical order parameter and deformations, the excitons are subject to self-trapping. That locally enhances their density which can surpass a critical value to trigger the phase transformation, even if the mean density is below the required threshold. The model can be used e.g. as a simplified version of optically induced neutral-ionic transitions in organic chain compounds.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call