Abstract
We develop the theory for the Stark fluorescence (SF) of molecular aggregates by taking into account the mixing of the excited states [including the states with charge-transfer (CT) characters]. We use the sum-over-state approach and modified rotating wave approximation to describe interactions of the static and optical fields with the permanent and transition dipoles of the excited states. The SF spectral profiles are calculated using the standard and modified Redfield theories for the emission lineshapes. The resulting expression allows an interpretation of the SF response based on the calculation of only one-exciton states (i.e., the calculation of two-exciton states is not needed). The shape and amplitude of the SF spectrum can exhibit dramatic changes in the presence of the CT states, especially when the CT state is mixed with the red-most emitting exciton levels. In this case, the SF responses are much more sensitive to the exciton-CT mixing as compared with the usual Stark absorption. The limitation of the proposed theory is related to the simplified nature of the Redfield picture, which neglects the dynamic localization within the mixed exciton-CT configuration.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.