Abstract

The charge density wave instability in one-dimensional semimetals is usually explained through a Peierls-like mechanism, where the coupling of electrons and phonons induces a periodic lattice distortion along certain modes of vibration, leading to a gap opening in the electronic band structure and to a lowering of the symmetry of the lattice. In this work, we study two prototypical Peierls systems: the one-dimensional carbon chain and the monatomic hydrogen chain with accurate ab initio calculations based on quantum Monte Carlo and hybrid density functional theory. We demonstrate that in one-dimensional semimetals at $T=0$, a purely electronic instability can exist independently of a lattice distortion. It is induced by spontaneous formation of low energy electron-hole pairs resulting in the electronic band gap opening, i.e., the destabilization of the semimetallic phase is due to an excitonic mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call