Abstract

We consider the pairing between conduction band electrons, and the valence band holes in the neutral bilayer-type structures. By employing the bilayer Hubbard model, we show the possibility of the inter-plane exciton formation in the system without applied external field. The in-plane and inter-plane Coulomb interaction effects on the pairing mechanism are considered, and the role of the in-plane particle hopping asymmetry on the gap behavior is analyzed in the paper. We show that both Frenkel-type pairing channel and Wannier–Mott-type excitonic pairings are present in the considered system. We analyze also the structure of the chemical potential in the bilayer system. The temperature effects, and the tunable inter-plane electron hopping effects are discussed. For the Frenkel channel, we have shown a particular behavior of the chemical potential at very low temperatures, which is related to the degenerated Frenkel-gap.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.