Abstract

Implementing the atomistic tight-binding theory in the conjunction with a configuration interaction method of coulomb and exchange description, the excitonic fine structure splitting (FSS) in core/shell semiconductor nanocrystals is usually caused by the intrinsic electron–hole exchange interaction. I demonstrate the control of the excitonic fine structure splitting by suitably engineering the type of the band alignments and the thickness of the growth shell. ZnTe/ZnS and ZnTe/ZnSe core/shell nanocrystals exhibiting the type-I and type-II band profile are used to be the simulated candidates with various growth shell thicknesses. The detailed calculations, consisting of single-particle spectra, optical band gaps, ground-state wave function overlaps, ground-state oscillation strengths, ground-state coulomb energies, ground-state exchange energies and excitonic splitting energies, are all sensitive with the type and dimension of the coated shells. The simulations highlight that ZnTe/ZnSe type-II core/shell nanocrystals with the thick growth shell can offer an intensely reduced excitonic splitting as defined by an associated reduction of electron–hole exchange interaction. This insight is important for the theoretical understanding and practical control by the type of the band alignments and sizes in the growth shell for the quantum state of the emitted light from a biexciton cascade recombination process which will be implemented to the entangled photon source in the novel application of quantum information processing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.