Abstract

Excitonic effects caused by the Coulomb interaction between electrons and holes play a crucial role in photocatalysis at the molecule/metal oxide interface. As an ideal model for investigating the excitonic effect, coadsorption and photodissociation of water and methanol molecules on titanium dioxide involve complex ground-state thermalcatalytic and excited-state photocatalytic reaction processes. Herein, we systemically investigate the excited-state electronic structures of the coadsorption of H2O and CH3OH molecules on a rutile TiO2(110) surface by linear-response time-dependent density functional theory calculations and probe the reaction path for generating HCOOH or CO2, from ground-state and excited-state perspectives. The reaction barriers in excited-state calculations are significantly different from those in ground-state calculations during three processes, with the largest decrease being 0.94 eV for the Ti5c-O-CH2-O-Ti5c formation process.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call