Abstract

The steady-state nonlinear response to optical excitation is studied for a thin layer containing “two-level-atoms” (TLA). For a high density of TLAs their dipole-dipole interaction and finite excitonic bandwidth effects become important. We demonstrate that the commonly used local-field approximation ignoring excitonic band effects breaks down. Considering a system of ordered TLAs corresponding to Frenkel excitons in molecular crystals we show that excitonic effects cause an instability of spatially uniform solutions and decrease drastically the existence range of the intrinsic optical bistability of a layer. The possibility of “fast instability”, developing with an increment large in comparison with relaxation rates and the Rabi frequency, also raises the question whether the local field approximation still holds for the description of transient optical phenomena in dense media.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.