Abstract

Recent experiments revealed stacking-configuration-independent and ultrafast charge transfer in transition metal dichalcogenides van der Waals (vdW) heterostructures, which is surprising given strong exciton binding energies and large momentum mismatch across the heterojunctions. Previous theories failed to provide a comprehensive physical picture for the charge transfer mechanisms. To address this challenge, we developed a first-principles framework which can capture exciton-phonon interaction in extended systems. We find that excitonic effect does not impede, but actually drives ultrafast charge transfer in vdW heterostructures. The many-body electron-hole interaction affords cooperation among the electrons, which relaxes the constraint on momentum conservation and reduces energy gaps for charge transfer. We uncover a two-step process in exciton dynamics: ultrafast hole transfer followed by much longer relaxation of intermediate "hot" excitons. This work establishes that many-body excitonic effect is crucial to the ultrafast dynamics and provides a basis to understand relevant phenomena in vdW heterostructures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.