Abstract

Abstract Applying the effective-mass approach, the energy eigenvalues of excitonic states in amorphous semiconductors are derived. It is shown that Wannier–Mott-type excitons can indeed be formed in amorphous solids. The results show that the occurrence of the double photoluminescence (PL) lifetime distribution peak, fast and slow, in hydrogenated amorphous silicon (a-Si: H) and hydrogenated amorphous germanium (a-Ge: H) can unambiguously be assigned to radiative recombinations from singlet and triplet excitonic states respectively. The dependence of PL peaks on the temperature and generation rate in a-Si: H and a-Ge: H is also discussed. The approach is general and simple and can be applied to study the charge-carrier transport and PL properties in any amorphous solid.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.