Abstract
Bilayer electron-hole systems undergo excitonic condensation when the distance d between the layers is smaller than the typical distance between particles within a layer. All excitons in this condensate have a fixed dipole moment which points perpendicular to the layers, and therefore this condensate of dipoles couples to external electromagnetic fields. We study the transport properties of this dipolar condensate system based on a phenomenological model which takes into account contributions from the condensate and quasiparticles. We discuss, in particular, the drag and counterflow transport, in-plane Josephson effect, and noise in the in-plane currents in the condensate state which provides a direct measure of the superfluid collective-mode velocity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.