Abstract

The optical anisotropy of the Sb2Se3 crystals was investigated at 300 and 11 K. Excitonic features of four excitons (A, B, C, and D) were observed in the optical spectra of the Sb2Se3 single crystals and in the photoelectric spectra of the Me–Sb2Se3 structures. The exciton parameters, such as the ground (n = 1) and excited (n = 2) state positions and the binding energy (Ry), were determined. The effective mass of the electrons at the bottom of the conduction band (mc* = 0.67m0) as well as the holes at the four top valence bands (mv1* = 3.32m0, mv2* = 3.83m0, mv3* = 3.23m0 and mv4* = 3.23m0) were calculated in the Г-point of the Brillouin zone. The magnitude of the valence band splitting V1–V2 due to the spin–orbit interaction (Δso = 35 meV) and the crystal field (Δcf = 13 meV) were estimated in the Brillouin zone center. The energy splitting between the bands V3–V4 was 191 meV. The identified features were discussed based on both the theoretically calculated energy band structure and the excitonic band symmetry in the Brillouin zone (k = 0) for crystals with an orthorhombic symmetry (Рnma). The photoelectric properties of the Me–Sb2S3 structures were investigated in the spectral range 1–1.8 eV under E||c and E⟂c polarization conditions and at different applied voltages.

Highlights

  • Antimony selenide (Sb2Se3) is an inorganic semiconductor compound with interesting photoelectric properties

  • Based in our previous work [24], the exciton binding energies, valence band parameters, valence band splitting, as well as the effective mass of electrons and holes were estimated for Sb2Se3 single crystals

  • The Sb2Se3 lattice parameters were determined based on the X-ray diffraction (XRD) analysis

Read more

Summary

Introduction

Antimony selenide (Sb2Se3) is an inorganic semiconductor compound with interesting photoelectric properties. The identified features were discussed based on both the theoretically calculated energy band structure and the excitonic band symmetry in the Brillouin zone (k = 0) for crystals with an orthorhombic symmetry (Рnma).

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call