Abstract

The excitation spectra of and emissions of self-trapped excitons (3.4 eV and 5.4 eV, respectively) as well as the excitation spectra of 5.17 eV luminescence of Ag+ impurity centres were measured in NaCl and NaCl:Ag crystals using synchrotron radiation of 5 - 38 eV. Fast and slow components of these emissions were detected. An analysis of the differences in the excitation spectra measured at 8 and 295 K allowed us to separate the excitonic and electron-hole (e-h) mechanisms of the multiplication of electronic excitations. A photon of 17 - 19 eV forms an e-h pair and a secondary exciton, while the absorption of a 21 - 27 eV photon causes the creation of two e-h pairs. Using luminescent and photoelectric methods, it was shown that a 2p3s Na+ cation exciton, formed at the absorption of a 33.4 eV photon, decays with the creation of an anion exciton with a 3p hole component and two e-h pairs. Three e-h pairs are formed after the absorption of a 31 eV photon by a chlorine ion.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.