Abstract

We determine the exciton states of T-shaped quantum wires. We use anisotropic effective-mass models to describe the electron and hole states. Pair correlation along the wire axis and in the lateral directions is included. We accurately model the measured redshifts between exciton photoluminescence in quantum wells and T-shaped wires. This redshift arises from enhanced exciton binding and the difference between well and wire confinement energy. We predict a large enhancement of binding energy only when lateral correlation is included, indicating that T-shaped wires are quasirather than quantum1D wires. We calculate exciton shapes and diamagnetic shifts to determine how the exciton is distorted when confined in a T-wire.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.