Abstract

Abstract A simple photochemical model of photosystem II consisting of antenna chlorophyll and a reaction center was used to examine the phenomenon of exciton detrapping, i.e. the transfer of excitation energy from open reaction centers back to the antenna. η, the ratio of the probability of detrapping when the reaction centers are all open, Ψt(o) to the probability when the centers are closed, Ψt(x) was used as a variable parameter to examine the various pathways of energy dissipation in a system in which P, the yield of photochemistry, and R, the ratio of the maximum to the minimum yields of fluorescence, were assumed to be known (e.g. R= 4.0 and P= 0.90). It is shown that η must fall within a range of values between 0 and R (1 –P) and that, for given values of R and P, Ψt(o) and the ratio of the rate constant for photochemistry at the reaction center, kp, to the rate constant for energy transfer back to the antenna, kt, can be determined for any assumed value of η. Even though detrapping occurs at open reaction centers, it is the magnitude of the yield of nonradiative decay at closed reaction centers, Ψa(x) which sets the upper limit on η. Equations for the overall yields of fluorescence and nonradiative decay in the antenna chlorophyll and of nonradiative decay at the reaction center chlorophyll, under conditions of both open and closed reaction centers, were derived in conventional probability terms and in terms of R, P and η. As η increases within its range of permissible values, energy dissipation in the antenna decreases and nonradiative decay at the reaction center increases. The determination of a specific value of η or of the ratio kpkt would require additional information such as the value of the maximum yield of fluorescence and the ratio of the rate constants for fluorescence and nonradiative decay in the antenna chlorophyll. The characteristics of a system in which there is no nonradiative decay in the reaction center (i.e. kd= 0), in which case R (1 –P) = 1.0, were also examined. In this case the yield of detrapping has no influence on energy dissipation in the system. Finally, the question of heterogeneity in PSII was considered. It is suggested that Ψd(x) may be greater in PSIIβ than in PSIIα so that the probability of detrapping could be greater in the PSIIα fraction.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call