Abstract

The exciton states in core/shell/shell spherical quantum dot with three-dimensional Winternitz–Smorodinsky confinement potential are considered. The problem is discussed in the framework of adiabatic approximation when the heavy hole is situated in the effective potential well caused by the electron. The interband optical transitions caused by incident light polarized in z-direction have been considered in such systems. The oscillator strengths and selection rules for the quantum transitions have been obtained. The ensemble of quantum dots and their size dispersion have been taken into account in the calculations. The Gaussian distribution has been chosen to describe the size dispersion of the core/shell/shell quantum dots thickness. The dependence of the absorption coefficient and photoluminescence spectra on the energy of incident light of interband transitions have been obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.