Abstract

Semiconductor microcavities play a key role in connecting exciton states and photons in advancing quantum information in solids. In this work we report on coherent interaction between high quality microcavity photon modes and spin states of a quantum dot in the strong coupling regime of cavity quantum electrodynamics. The coupling between the photon and exciton modes is studied by varying the temperature, where the spin states are resolved with a magnetic field applied in Faraday configuration. A detailed oscillator model is used to extract coupling parameters of the individual spin and cavity modes, which shows that the coupling depends on features of the mode symmetries. Our results demonstrate an effective coupling between photon modes that is mediated by the exciton spin states.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call