Abstract

Recent experiments have suggested that exciton self-trapping plays an important role in governing the optical properties of graphene quantum dots (GQDs) and carbon dots (CDs), while the molecular structures related to this phenomenon remain unclear. This theoretical study reports exciton self-trapping induced by edge-bonded ether (C-O-C) groups in graphene nanosheets. Density functional theory (DFT) and time-dependent DFT calculations show that the initially delocalized electron and hole are trapped in the vicinity of the edge ether groups on graphene nanosheets upon excited-state (S1) relaxation, accompanied by structural planarization of the seven-membered cyclic ether rings in the same region. The resulted significant structural deformation leads to large Stokes shift energies, which are comparable to the magnitudes of the notably large emission shift observed in experiments. This study provides a feasible explanation of the origin of exciton self-trapping and offers guidance for experiments to investigate and engineer exciton self-trapping in relevant materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.