Abstract
This paper introduces an intersection theory problem for maps into a smooth manifold equipped with a stratification. We investigate the problem in the special case when the target is the unitary group [Formula: see text] and the domain is a circle. The first main result is an index theorem that equates a global intersection index with a finite sum of locally defined intersection indices. The local indices are integers arising from the geometry of the stratification. The result is used to study a well-known problem in chemical physics, namely, the problem of enumerating the electronic excitations (excitons) of a molecule equipped with scattering data.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.