Abstract

The exciton-polariton transfer and absorption in regular and disordered structures with a finite number of quantum wells are studied theoretically. The transfer matrix method is invoked in the exciton resonance region to calculate the reflectivity, transmissivity, and absorptivity spectra, as well as the integrated absorptivity as a function of the γ/Γ0 ratio of the parameters of nonradiative and radiative damping of quasi-two-dimensional excitons. It is shown that the integrated absorptivity as a function of γ (temperature) follows a universal pattern, more specifically, it increases monotonically from zero at γ = 0 to saturate at γ/Γ0 ≫ 1. Because the exciton-polariton absorption being single mode, the integrated absorptivity in Bragg quantum-well structures is substantially lower than that in short-period structures, in which absorption involves the whole spectral multitude of modes. The intrawell disorder associated with fluctuations in the frequencies of exciton excitation in quantum wells enhances the integrated absorptivity to the level typical of light absorption with no resonance among excitons of different quantum wells. The interwell disorder originating from fluctuations in quantum-well separation likewise leads to an increase in the integrated absorptivity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call