Abstract

We describe the physical properties of excitons in hybrid complexes composed of semiconductor and metal nanoparticles. The interaction between individual nanoparticles is revealed as an enhancement or suppression of emission. Enhanced emission comes from electric field amplified by the plasmon resonance, whereas emission suppression is a result of energy transfer from semiconductor to metal nanoparticles. The emission intensity and energy transfer rate depend strongly on the geometrical parameters of the superstructure and the physical and material properties of the nanoparticles. In particular, the emission enhancement effect appears for nanoparticles with relatively small quantum yield, and silver nanoparticles have stronger enhancement compared to gold ones. Using realistic models, we review and analyze available experimental data on energy transfer between nanoparticles. In hybrid superstructures conjugated with polymer linkers, optical emission is sensitive to environmental parameters such as, for example, temperature. This sensitivity comes from expansion or contraction of a linker. With increasing temperature, emission of polymer-conjugated complexes can decrease or increase depending on the organization of a superstructure. The structures described here have potential as sensors and actuators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.