Abstract

We investigate from first principles exciton-phonon interactions in monolayer germanium selenide, a direct gap two-dimensional semiconductor. By combining the Bethe-Salpeter approach and the special displacement method, we explore the phonon-induced renormalization of the exciton wave functions, excitation energies, and oscillator strengths. We determine a renormalization of the optical gap of 0.1 eV at room temperature, which results from the coupling of the exciton with both acoustic and optical phonons, with the strongest coupling to optical phonons at ∼100 cm-1. We also find that the exciton-phonon interaction is similar between monolayer and bulk GeSe. Overall, we demonstrate that the combination of many-body perturbation theory and special displacements offers a new route to investigate electron-phonon couplings in excitonic spectra, the resulting band gap renormalization, and the nature of phonons that couple to the exciton.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.