Abstract
We examine the temperature-dependent excitonic transition energy shift of strain-free GaAs droplet epitaxy (DE) quantum dots (QDs). Interestingly the statistical investigation of QD optical properties enables us to observe three distinct temperature dispersions for four series of DE QDs. We present comparative analyses of the exciton-phonon coupling mechanisms employing various empirical to multi-oscillator models associated with each QD-specific phonon dispersion spectrum. The systematic investigation of such QD exciton-phonon coupling is crucial for fine control of local defects in engineered quantum dot single-photon sources.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.