Abstract

Phonon scattering with photogenerated excitons and free charges greatly affects optoelectronic properties of metal halide perovskites and governs their emission line width. Benefiting from the improved phase purity, we are able to analyze exciton-phonon coupling in 2D and quasi-2D BA2MAn-1PbnI3n+1 (n = 1-3) thin films using temperature-dependent photoluminescence (PL) spectroscopy. The layer thickness (n value) dependent coupling of free excitons with both acoustic and longitudinal optical (LO) phonons was extracted quantitatively by fitting the temperature-dependent PL line width and band gap. The low energy emissive signatures below free excitons at low temperature might belong to the emission of self-trapped excitons and bounded excitons in structural defects. Our findings provide a systematic picture for the layer thickness (n value) dependent exciton-phonon coupling in 2D and quasi-2D perovskite thin films and could be helpful for improving the optoelectronic performance of devices made by Ruddlesden-Popper perovskite thin films.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.