Abstract

This paper presents a comprehensive study of the energy structure, optical characteristics, and spectral-kinetic parameters of elementary excitations in a high-purity nanocrystalline cubic Y2O3 film synthesized by reactive magnetron sputtering. The optical transparency gaps for direct and indirect interband transitions were determined and discussed. The dispersion of the refractive index was established based on the analysis of interference effects. It was found that the refractive index of the Y2O3 film synthesized in this study is higher in order of magnitude than that of the films obtained with the help of other technologies. The intrinsic emission of Y2O3 film has been discussed and associated with the triplet–singlet radiative relaxation of self-trapped and bound excitons. We also studied the temperature behavior of the exciton luminescence of Y2O3 for the first time and determined thermal activation barriers. The optical energy and kinetic parameters of cubic Y2O3 films were analyzed in comparison with those of the monoclinic films of yttrium oxide. The main difference between the optical properties of cubic and monoclinic Y2O3 films was established, which allowed for a supposition of their application prospects.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call