Abstract

The formation and stability of excitons in semiconductors is studied on the basis of a microscopic model that includes Coulomb interacting fermionic electrons and holes as well as phonons. Whereas quasiequilibrium calculations predict substantial exciton fractions coexisting with an electron-hole plasma at low temperatures and densities, dynamic calculations reveal that the exciton formation times under these conditions exceed the characteristic lifetimes. At elevated densities, good agreement between dynamical and quasiequilibrium calculations is obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.